Gerrymander Project

Architecture

Front
Website
Leaflet MNode.js D3
Carolina CloudApps
Back
Decomposition
Modules

We've decided to use Carolina Cloudapps to host our website, with a Node.js layer to provide
communication between the browser (client) and the server. The Node.js layer is responsible for sending
the relevant page for the user to see, so that the user can access the website using the URL hosted by
Carolina CloudApps (http://gerrymandering-dept-gerrymandering.cloudapps.unc.edu).

We then have two external libraries which are used to better visualise the data related to the districts
e Leaflet - Choropleth maps for each metric
e (3 - Charts such as bar charts for each district and metric

Although not included in this diagram, R was used in order to process shapefiles for different North Carolina
district maps and translate them into GeoJSON format, so that the data can be interpreted into a more
human-friendly format, like choropleth maps, tables, or charts.

GeoJSON files used for this app contain different types of data depending on what was being visualised:
e Boundary co-ordinates
e Metric data

Each district has a set of co-ordinate pairs, originally stored by the state’s shapefile map, which define the
boundaries of the district on a world map. These co-ordinates are then used to draw out each district in an


http://gerrymandering-dept-gerrymandering.cloudapps.unc.edu/

embedded Google Map on the website. As we are using Leaflet with Mapbox to display each district,
as opposed to Google Maps, each generated co-ordinate pair MUST be represented in a format such
that the longitude (West/East) is the first element in the pair and the latitude (North/South) is the
second element. We also use decimals numbers rather than minutes and seconds to further refine the
positions that make up each boundary. For example, the Sitterson building has a latitude of 35.909 and a
longitude of -79.053. If we were to give that information to Leaflet, we would have to pass it with the
longitude first as (-79.053, 35.909).

The second set of data the GeoJSON file should have about each district is compactness metrics related to
gerrymandering. We decided to use the following:
e Reock
Polsby Popper
Schwartzberg
Convex Hull
Length Width
X Symmetry

Each district in a GeoJSON file should have a value for each metric that will be used in the application, our
case being the six already listed above. The data is then used to colour the choropleth maps, as well as to
generate tables and graphs based on them

Design Decisions

We decided to use Node.js because of it being lightweight and scalable. We've decided to use R to analyze
the shapefile maps because R provides convenient access to the Geospatial Data Abstraction Library (gdal)
for translating a number of common raster and vector geospatial data formats used in redistricting
applications. Because we want dynamic data visualizations, we’re using C3.js, and JavaScript for the
front-end to populate the website.



